Multi-classifier Scheme with Low-Level Visual Feature for Adult Image Classification
نویسندگان
چکیده
As the usage and accessing of children to the web resources with porn images contain is growing, requirement of methods with high accuracy to detect and block adult images is a necessity. In this paper, a novel multi-classifier scheme is proposed based on low-level feature to exploit of advantages in classifier ensemble for achieving better accuracy compared to single classifier that applied to adult images detection. Low-level features are three different MPEG-7 descriptors include Color Layout Descriptor (CLD), Scalable Color Descriptor (SCD) and Edge Histogram Descriptor (EHD). In the classification part Support Vector Machine (SVM) and AdaBoost are applied and combined. Experimental results indicate that proposed scheme works better than each single classifier that used in the experiments.
منابع مشابه
Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملفشردهسازی تصویر با کمک حذف و کدگذاری هوشمندانه اطلاعات تصویر و بازسازی آن با استفاده از الگوریتم های ترمیم تصویر
Compression can be done by lossy or lossless methods. The lossy methods have been used more widely than the lossless compression. Although, many methods for image compression have been proposed yet, the methods using intelligent skipping proper to the visual models has not been considered in the literature. Image inpainting refers to the application of sophisticated algorithms to replace lost o...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011